منابع مشابه
Better short-seed quantum-proof extractors
We construct a strong extractor against quantum storage that works for every min-entropy k, has logarithmic seed length, and outputs Ω(k) bits, provided that the quantum adversary has at most βk qubits of memory, for any β < 1 2 . The construction works by first condensing the source (with minimal entropy-loss) and then applying an extractor that works well against quantum adversaries when the ...
متن کاملBetter short-seed extractors against quantum knowledge
We construct a strong extractor against quantum storage that works for every min-entropy k, has logarithmic seed length, and outputs Ω(k) bits, provided that the quantum adversary has at most βk qubits of memory, for any β < 12 . Previous constructions required poly-logarithmic seed length to output such a fraction of the entropy and, in addition, required super-logarithmic seed length for smal...
متن کاملQuantum-Proof Multi-Source Randomness Extractors in the Markov Model
Randomness extractors, widely used in classical and quantum cryptography and other fields of computer science, e.g., derandomization, are functions which generate almost uniform randomness from weak sources of randomness. In the quantum setting one must take into account the quantum side information held by an adversary which might be used to break the security of the extractor. In the case of ...
متن کاملQuantum-Proof Extractors: Optimal up to Constant Factors
We give the first construction of a family of quantum-proof extractors that has optimal seed length dependence O(log(n/ǫ)) on the input length n and error ǫ. Our extractors support any min-entropy k = Ω(log n+ log(1/ǫ)) and extract m = (1− α)k bits that are ǫ-close to uniform, for any desired constant α > 0. Previous constructions had a quadratically worse seed length or were restricted to very...
متن کاملTwo-Source Extractors Secure against Quantum Adversaries
We initiate the study of multi-source extractors in the quantum world. In this setting, our goal is to extract random bits from two independent weak random sources, on which two quantum adversaries store a bounded amount of information. Our main result is a two-source extractor secure against quantum adversaries, with parameters closely matching the classical case and tight in several instances...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2012
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2011.11.036